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Current homogenized finite element (hFE) models of the patella lack a validated material law and mostly
overlook trabecular anisotropy. The objective of this study was to identify the elastic constants of patellar
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trabecular bone. Using μCT scans of 20 fresh-frozen cadaveric patellae, we virtually extracted 200 tra-
becular cubes (5.3 mm side length). Bone volume fraction and fabric tensor were measured. The elastic
constants were identified from six independent load cases using micro finite element (μFE) analyses.
Both anisotropic and isotropic material laws were considered. The elastic constants were validated by
comparing stiffness, strain and stress between hFE and μFE predictions of 18 patellar sections and six
load cases. The hFE section models were built from μCT (anisotropic law) and CT (isotropic law) scans.
The homogenized anisotropic model induced less error (1375%) in the global stiffness prediction than
the isotropic one (1876%), and less error in the prediction of local apparent strain, stress, and strain
energy, compared to the isotropic one. This validated hFE model could be used for future applications,
either with the anisotropic constants, or with the isotropic ones when the trabecular fabric is unavailable.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, the existing homogenized finite element (hFE)
models of patella rely on material laws identified not on the
patellar bone, but, for example, femur or vertebra (Fitzpatrick
et al., 2011; Ho et al., 2014; Takahashi et al., 2012). Furthermore,
the anisotropy of the trabecular bone, shown to be crucial for
predicting its elastic properties on various anatomical sites
(Maquer et al., 2015), is completely overlooked.

Abrupt changes of main trabecular orientations (Raux et al.,
1975) and the small size of the patella make it difficult to extract
samples of appropriate dimensions for biomechanical testing and
complicate accurate experimental measurements (Lammentausta
et al., 2006). In such cases, micro finite element (μFE) modeling
based on high-resolution mCT reconstruction is a common alter-
native to in vitro mechanical testing (Pistoia et al., 2002; van
Rietbergen and Ito, 2015; Wolfram et al., 2010). This method
avoids preparation- and damage-related artefacts and restriction
al Orthopedics, Ecole Poly-
sanne, Switzerland.

er).
regarding the number of load-cases used to assess the elastic
constants. Besides, the influence of any bony feature observable on
mCT images can be reflected in the analysis.

Therefore, the aim of this study was to identify and validate
elastic constants of the patellar bone specifically. The anisotropic
constitutive law based on morphology-elasticity relationship and
alternative isotropic law based on bone volume fraction were con-
sidered. Identification of homogenized models was performed by
means of μFE simulated mechanical tests of μCT scanned cadaveric
patellae. To validate the identified parameters, predictions of hFE
models build from μCT and CT scans of cadaveric patellar sections
were compared to μFE predictions of the same patellae.
2. Materials and methods

2.1. mCT and CT imaging

Twenty fresh-frozen cadaveric patellae (12 male, 8 female; age range 15–93,
mean age 67717) after thawing at room temperature overnight and bubble
removal, were scanned with a mCT (Skyscan 1076, Bruker microCT, Kontich, Bel-
gium) in a saline soaked gauze with the following scanning settings: 18.3 mm
resolution, 80 kV/120 mA, 540 ms exposure time, 1 mm aluminum filter, 0.2° rota-
tion step. The patellae were then CT scanned (Discovery 110 CT750 HD, GE
Healthcare, Milwaukee, USA) with a resolution of 0.39�0.39�0.625 mm3. The mCT
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images were downscaled to 36.6 mm resolution and segmented using a single level
threshold algorithm (Ridler and Calvard, 1978). Image pre-processing was done in
Medtool (www.dr-pahr.at).

2.2. Identification of the material laws

The following constitutive law was considered (Zysset, 2003; Zysset and Cur-
nier, 1995):

Ei ¼ E0ρkðm2
i Þl ;

Ei
νij

¼ E0
ν0
ρkðmimjÞl ;Gij ¼ G0ρkðmimjÞl ; 8 ia j¼ 1;2;3; ð1Þ

where Ei, vij, and Gij are engineering constants, E0, ν0, G0, k, l are model parameters,
ρ is the bone volume fraction, and mi are the normalized eigenvalues of the
second-order fabric tensor M (Cowin, 1985). The isotropic case was based on the
same relationship with M equal to the identity tensor I.

To identify the model parameters, simple mechanical tests were conducted via
mFE on 200 trabecular cubes (5.3 mm side length), virtually extracted from mCT
scans of all patellae. Cubes were visually checked to have relatively homogeneous
bone distribution within volume, without abrupt change in trabecular direction,
and a sufficient amount of trabecular on the sides to provide proper load transition
(Fig. 1). Bone volume fraction (ρ), defined as bone volume over the total tissue
volume, fabric tensor M , established through mean intercept length (MIL) (Laib et
al., 1998; Whitehouse, 1974), and the degree of anisotropy (DA), defined as a ratio
between maximum and minimum eigenvalues of fabric tensor (Hildebrand et al.,
1999), were measured for each cube. All cubes were converted into mFE models
with linear hexahedral elements (about 9 million degrees of freedom) following a
linear elastic law (E¼12 GPa, ν¼0.3) for bone tissue (Wolfram et al., 2010). Three
compression and three shear load cases were applied to each cube under kinematic
uniform boundary conditions (KUBC) (Pahr and Zysset, 2008). The full stiffness
tensor (CmFE_aniso) of each cube was obtained by averaging mFE local strain and stress
predictions. The orthotropic approximation (CmFE_ortho) of the stiffness tensor was
considered for further analysis. The norm error associated with this assumption
was calculated by

NEaniso�ortho ¼
‖CμFE_aniso�CμFE_ortho‖

‖CμFE_aniso‖
ð2Þ
Fig. 1. Workflow of the study. The isotropic and anisotropic elastic laws for trabecular bo
200 cubic specimens (1). Those material models were validated against mFE by comparin
SED) of 18 patellar sections (2).
Model parameters were identified by fitting the material law (1) to components
of mFE stiffness tensor, using multi linear regressions in logarithmic scale. The same
procedure was repeated for the isotropic model. Pre- and post-processing were
done in Medtool, and mFE simulations were performed using ParFE (parfe.source
forge.net).

2.3. Validation of the material laws

To validate the material laws, mFE and hFE predictions of cuboid sections
(15�22�16 mm3 (78 mm3)) of 18 out of 20 patellae were compared. One patella
was excluded due to bone defects (probably metastases), and for one section μFE
simulations did not converge. The sections were extracted from mCT scans by
cropping the superior-inferior and medial-lateral sides, and embedding the ante-
rior and posterior sides (Fig. 1). The embedding was modeled as linear elastic
material (E¼1400 MPa, ν¼0.3). Three tension and three shear KUBC load cases
were simulated. Each mFE model had approximately 350 million degrees of free-
dom. The mFE simulations were performed using ParOSol (bitbucket.org/Elanku
maran/parosol-tu-wien). The hFE model meshes were created based on the same
cropped mCT images downscaled to 0.54 mm voxel size. Each voxel was converted
to a linear hexahedral element. Material properties of each bone element of the
anisotropic model were automatically assigned by Medtool from original seg-
mented mCT images, according to bone volume fraction and fabric (MIL) measured
in 5.3-mm-diameter spherical volumes positioned in nodes of the mCT 2.0-mm-
side-length background grid (Pahr and Zysset, 2009). In case of the isotropic model,
the bone volume fraction was estimated from Hounsfield units (HU) of CT cali-
brated images (Latypova et al., 2016):

ρ¼ 1:0614� BMD–0:0573;BMD¼HU=1510: ð3Þ

The same parameters for background grid and spherical volumes were used.
Each hFE model had approximately 9�104 degrees of freedom. The hFE simula-
tions were performed with Abaqus/Standard (Simulia, Providence, RI, USA).

To compare global mFE and hFE predictions, the stiffness matrices of the whole
sections were calculated through the averaged strain and stress tensors and the
ne based on bone volume fraction and fabric anisotropy were identified via mFE for
g the global stiffness and local strain and stress measures (trE, OctSS, trS/3, Mises,
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orthotropic part was considered (CmFE and ChFE). The difference was estimated by

NEhFE ¼
‖CμFE�ChFE‖

‖CμFE‖
ð4Þ

In addition, the statistical significance between error induced by isotropic and
anisotropic assumption was estimated with paired t-test. For local comparison, ten
cubic (5.4 mm side) regions of interest (ROI) were extracted from each section. The
size of the cubes was chosen to be consistent with the homogenization during the
identification study. The components of strain and stress tensors were averaged on
these ROIs. Volumetric strain (trE), octahedral shear strain (OctSS), volumetric
stress (trS/3), von Mises stress (Mises), and strain energy density (SED) were
compared. The hFE predictions were quantified with adjusted correlation coeffi-
cient (r2adj), concordance correlation coefficient (ccc) (Lin, 1989), root mean square
error (RMSE) and p value. The statistical significance between the correlations was
analyzed with Williams formula proposed by (Steiger, 1980). Significance level was
set to 95% (po0.05) for all statistical analyses. The analysis of OctSS, Mises and SED
followed a logarithmic transformation. Global stiffness was obtained by post-
processing functions of Medtool. Strain and stress tensors in integration points of
ROI were extracted from mFE results with Paraview (paraview.org), and with python
script (Python 2.6.6) from the hFE results. ROIs were extracted from 10 patellar
sections since 8 of 18 sections could not be loaded in Paraview, probably due to
large (up to 42 GB) file sizes.
3. Results

The average bone volume fraction ρ of 200 cubes was
0.2970.11. Eigenvalues of the fabric tensor were m1¼0.7770.07,
m2¼0.9970.06, m3¼1.2370.09. DA was 1.6270.23. The norm
error NEaniso-ortho was 6.1572.92%. Both anisotropic and isotropic
homogenized laws were strongly correlated to the μFE reference
(Table 1).

The validation was conducted on 18 sections. Both anisotropic
and isotropic hFE showed good match to μFE reference (Table 1).
The anisotropic norm error NEhFE was lower (1375%) than the
isotropic one (1876%). The isotropic norm error was statistically
significantly different from anisotropic norm error (p¼0.0009).

Local comparison was conducted on 100 cubic ROIs. The corre-
lations of hFE against μFE for volumetric strain and stress were
strong for anisotropic and isotropic models, but better for aniso-
tropic one (Table 1). For OctSS, SED and Mises, anisotropic predic-
tions also provided higher correlation coefficients, slopes of
regression line closer to unit and lower RMS errors. The correlations
were statistically significantly different (po0.001). The strain and
Table 1
Identification and validation, for anisotropic and isotropic morphology-elasticity model
analysis. Validation includes regression analysis between components of global stiffne
isotropic hFE models (x) against μFE reference (y).

Identifica

E0 (MPa) ν0 G0 (MPa) k l

Anisotropy 12723.1 0.24 4224.6 2.1 1.0
Isotropy 11035.9 0.26 4395.1 2.13 –

Validati

Anisotropy Global stiffness matrices
Volumetric strain (trE)
Octahedral shear strain (OctSS)
Volumetric stress (trS/3)
Von Mises stress (Mises)
Strain energy density (SED)

Isotropy Global stiffness matrices
Volumetric strain (trE)
Octahedral shear strain (OctSS)
Volumetric stress (trS/3)
Von Mises stress (Mises)
Strain energy density (SED)
stress distribution of hFE model was visually consistent with μFE
reference (Fig. 2).
4. Discussion

Currently, literature is lacking validated material law for the
patellar bone that can be implemented in hFE models. Such
models can be used for numerical predictions of patellar strain in
order to better understand patellar pathologies such as fracture
after total knee arthroplasty (Fitzpatrick et al., 2011, 2013) or
anterior knee pain (Ho et al., 2014). In this study we identified and
validated anisotropic and isotropic material models for patellar
trabecular bone by means of mFE analyses on 20 cadaveric patellae
that can be further used in hFE models.

The average bone volume fraction ρ of the extracted cubes was
consistent with the reported values (Lammentausta et al., 2006;
Raux et al., 1975). The structure of the patellar trabecular was
found to be closer to orthotropic rather than isotropic or trans-
verse isotropic. The low error caused by orthotropic approximation
confirmed this observation. The average degree of anisotropy was
in the range of other anatomical zones (femur, radius, and verte-
bra) (Gross et al., 2013), but no data for the patellar bone was
found for comparison. The identified model parameters were also
consistent with the literature (Gross et al., 2013), but higher
exponential constants were obtained. It suggests that higher
stiffness at low bone volume fraction zones and lower stiffness at
higher bone volume fraction zones will be assigned to the patellar
hFE if material parameters from other anatomical sites are used.

For validation of the identified elastic laws, the global stiffness
and local strain and stress invariants of the bone sections modeled
as hFE was compared to its μFE equivalent. The isotropic hFE was
based on CT images since currently it is a gold standard in clinical
application. The analyzed invariants were chosen as the common
descriptors of bone strain and stress state that can be linked with
bone damage. Both models showed highly significant correlation
to μFE predictions, however, as expected, accounting for the tra-
becular fabric improved the correlation of the model against the
μFE analyses (Gross et al., 2013; Maquer et al., 2015). Even though
the anisotropic model better predicted the μFE global stiffness, it
s. Identification includes parameters for elasticity models and results of regression
ss matrices, and local strain and strain measures calculated with anisotropic and

tion

Regression r2adj ccc RMSE p-Value

2 y¼0.949xþ0.316 0.95 0.97 0.20 o0.001
y¼0.838xþ1.000 0.85 0.92 0.32 o0.001

on

Regression r2adj ccc RMSE p-Value

y¼1.070x�0.641 0.96 0.96 0.16 o0.001
y¼0.961xþ1e�5 0.98 0.99 8e�5 o0.001
y¼0.988x�0.083 0.84 0.91 0.07 o0.001
y¼0.972xþ0.013 0.98 0.98 0.08 o0.001
y¼0.913x�0.001 0.96 0.98 0.19 o0.001
y=0.913x�0.662 0.98 0.98 0.17 o0.001
y=0.978x+0.094 0.93 0.96 0.21 o0.001
y=0.962x+2e�5 0.96 0.98 1e�4 o0.001
y=0.946x�0.367 0.71 0.84 0.10 o0.001
y=0.846x+0.021 0.94 0.96 0.16 o0.001
y=0.792x�0.112 0.80 0.79 0.33 o0.001
y=0.835x�1.316 0.89 0.86 0.29 o0.001

http://paraview.org


Fig. 2. Comparison of von Mises stress (Mises), strain energy density (SED) and octahedral shear strain (OctSS) contour plots of μFE and hFE predictions for the patella under
tension in superior-inferior direction (patellar cut in sagittal plane).
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was still found slightly less stiff, possibly due to the lack of explicit
cortex modeling (Pahr and Zysset, 2009). The highest variation
between μFE and hFE stress predictions was found in cubes with
low stress values caused by low bone volume fraction. These
finding supports results of a similar study conducted on the
proximal femur (Hazrati Marangalou et al., 2012). The correlation
of the local strain predictions was lower than those of stress pre-
dictions most probably due to the lower variation of strain values.

Several limitations of the study should be mentioned. The
identification was conducted on bone cubes using kinematic uni-
form boundary conditions that tend to overestimate bone effective
stiffness (Hazanov and Huet, 1994). The bone tissue was assumed
homogeneous and isotropic material, but it was demonstrated
previously that heterogeneous tissue mineralization has only a
minor effect on apparent trabecular bone elastic properties (Gross
et al., 2012). The material model validation with six canonical
loading cases of patellar cuboid sections allowed controlled
boundary conditions and easy result interpretation (van Rietber-
gen and Ito, 2015; Zysset et al., 2013). However, predictions of
anisotropic and isotropic models should be further compared for a
whole patella under more physiological loading conditions. The
importance of modeling anisotropy could be further emphasized
in such case.

In conclusion, an anisotropic and an isotropic morphology-
elasticity model for patellar trabecular bone were identified and
validated. When high-resolution images are available, the aniso-
tropic material parameters can be assigned to hFE models,
assuming direct access to bone volume fraction and fabric tensor
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from images. When only low-resolution images are available, such
as clinical CT scans, the isotropic model is a reasonable alternative.
The anisotropic model might still be applicable by estimating
anisotropy with recently proposed approaches, such as database
approach or μCT template registration (Marangalou et al., 2013;
Taghizadeh et al., 2016).
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